Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach
نویسندگان
چکیده
We present the Gaussian and plane waves (GPW) method and its implementation in QUICKSTEP which is part of the freely available program package CP2K. The GPW method allows for accurate density functional calculations in gas and condensed phases and can be effectively used for molecular dynamics simulations. We show how derivatives of the GPW energy functional, namely ionic forces and the Kohn-Sham matrix, can be computed in a consistent way. The computational cost of computing the total energy and the Kohn-Sham matrix is scaling linearly with the system size, even for condensed phase systems of just a few tens of atoms. The efficiency of the method allows for the use of large Gaussian basis sets for systems up to 3000 atoms, and we illustrate the accuracy of the method for various basis sets in gas and condensed phases. Agreement with basis set free calculations for single molecules and plane wave based calculations in the condensed phase is excellent. Wave function optimisation with the orbital transformation technique leads to good parallel performance, and outperforms traditional diagonalisation methods. Energy conserving Born-Oppenheimer dynamics can be performed, and a highly efficient scheme is obtained using an extrapolation of the density matrix. We illustrate these findings with calculations using commodity PCs as well as supercomputers. Quickstep: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach Joost VandeVondele ∗ Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom Matthias Krack, Fawzi Mohamed, and Michele Parrinello Computational Science, Department of Chemistry and Applied Biosciences, ETH Zurich, USI-Campus, via G. Buffi 13, CH-6900 Lugano, Switzerland Thomas Chassaing, and Jürg Hutter Physical Chemistry Institute, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
منابع مشابه
Plane-wave Pseuclopotential Density Functional Theory periodic Slab Calculations of NO Adsorption on Co(111) Surface
Plane-wave pseudopotential Density Functional Theory (OFT) periodic slab calculations were performed usingthe giteralized gradient approximation (GHA) to investigate the adsorption of nitric oxide(NO) on the (I II)surface of Cu. Copper rface was stimulated using th P 'odic Slab Method consisting of Five atomic Layers.Four different adsorption saes (Atop. Bridge, RCP Hollow, and FCC Hollow) were...
متن کاملA New Fast and Accurate Fault Location and Classification Method on MTDC Microgrids Using Current Injection Technique, Traveling-Waves, Online Wavelet, and Mathematical Morphology
In this paper, a new fast and accurate method for fault detection, location, and classification on multi-terminal DC (MTDC) distribution networks connected to renewable energy and energy storages presented. MTDC networks develop due to some issues such as DC resources and loads expanding, and try to the power quality increasing. It is important to recognize the fault type and location in order ...
متن کاملبررسی ساختار نواری بلور حالت جامد 60 fcc-C
We studied the architecture of the C60 cluster to drive its atomic positions which can be seen at room temperature. We then used the obtained carbon positions as a basis set for the fcc structure to construct the fcc-C60 compound. Self consistent calculations were performed based on the density functional theory (DFT) utilizing the accurate WIEN2K code to solve the single-particle Kohen-Sham eq...
متن کاملGaussian and plane-wave mixed density fitting for periodic systems.
We introduce a mixed density fitting scheme that uses both a Gaussian and a plane-wave fitting basis to accurately evaluate electron repulsion integrals in crystalline systems. We use this scheme to enable efficient all-electron Gaussian based periodic density functional and Hartree-Fock calculations.
متن کاملخواص ساختاری و پاشندگی فونونها در بلورNaCI
Although many phenomena in condensed matter Physics can be understood on the basis of a model, there are also considerable number of physical properties of solid which can not be explained except in the framework of lattice dynamics. We have calculated the phonon frequencies of Na Cl, using an approach which is a combination of frozen phonon and force constants methods in the framework of d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computer Physics Communications
دوره 167 شماره
صفحات -
تاریخ انتشار 2005